

						- 1
USN						

15ME61

Sixth Semester B.E. Degree Examination, Aug./Sept.2020 **Finite Element Method**

Time: 3 hrs. Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Explain briefly about Node location system and numbering scheme. (06 Marks)
 - b. For the spring system shown in Fig.Q1(b), using principle of minimum potential energy, determine the nodal displacements. Take $F_1 = 75N$, $F_2 = 100N$.

OF

- 2 a. State and explain convergence requirements.
 - b. Write a short note on:
 - (i) Geometrical isotropy for 2D Pascal triangle.
 - (ii) Coordinate system.

(06 Marks)

(04 Marks)

c. Explain simplex, complex and multiplex elements.

(06 Marks)

Module-2

3 a. Derive the shape function for triangular (CST Element) in natural coordinate system.

(08 Marks)

b. Derive the shape functions for a 4-node Quadrilateral element in natural co-ordinates.

(08 Marks)

OR

- 4 a. Obtain an expression for stiffness matrix of a truss element.
- (06 Marks)
- b. Find the nodal displacement, stress and reaction of truss element shown in Fig.Q4(b). Take E = 200 GPa.

(10 Marks)

15ME61

Module-3

5 a. Derive the Hermite function for a beam element.

(08 Marks)

b. For the beam and loading shown in Fig.Q5(a), determine the slopes at 2 and 3 and the vertical deflection at the midpoints of the distributed load. Take E = 200 GPa, $I = 4 \times 10^6 \,\mathrm{mm}^4$.

OR

- 6 a. Derive the stiffness matrix for a circular shaft subjected to pure torsion.
- (08 Marks)
- b. A solid stepped bar of circular c/s shown in Fig.Q6(b) is subjected to a torque of 1 kN-m at its free end and torque of 3 kN-m at its change in c/s section. Determine the angle of twist and shear stress in the bar. Take $E = 2 \times 10^5 \text{ N/mm}^2$, $G = 7 \times 10^4 \text{ N/mm}^2$.

Module-4

- 7 a. Derive element conductivity matrix for 1-dimensional heat flow element.
- (06 Marks)
- b. Determine the temperature distribution through the composite wall subjected to convection heat loss on the right side surface with convective heat transfer co-efficient as shown in Fig.Q7(b). The ambient temperature is 5°C.

OR

8 a. Derive the stiffness matrix for 1D fluid element.

- (08 Marks)
- b. For the smooth pipe shown in Fig.Q8(b), with uniform c/s of 1 m². Determine the flow velocities at the centre and right end, knowing the velocity at the left is $V_x = 2$ m/s.

Module-5

9 a. Derive the shape function for an axisymmetric triangular element.

(08 Marks)

b. For the element of an axisymmetric body rotating with a constant angular velocity $\omega = 1000$ rev/min as shown in Fig.Q9(b), determine the body force vector. Include the weight of the material, where the specific density is 7850 kg/m³.

OR

10 a. Derive the consistent mass matrix for bar element.

(06 Marks)

b. Determine the natural frequency of longitudinal vibration of the bar shown in Fig.Q10(b). Take, E = 200 GPa, $\rho = 7840 \text{ kg/m}^3$, $A = 240 \text{ mm}^2$.

